
1
CIS 422/522

CIS 422/522 Winter 2014 1

What Makes it Special...

You can:
• Specialize in the fast-growing field of bioinformatics

and genomics.

• Earn a degree and a paycheck.

• Earn a degree in 16 months.

• Earn $2500 - $5400 per month during your internship.

• Grow your professional network and enhance your
resume.

MS Internship Program at the University of Oregon

Thursday, December 4th
5PM, Deschutes 100

Bioinformatics Q&A
& PIZZA

Jaclyn Smith
Undergrad: UO,
Biology/Computer Science
Internship: OHSU

Robert Wisner
Undergrad: Colorado
State, Pueblo - Chemistry
(Biochemistry)
Internship: Bend Research

CIS 422/522 Winter 2014 2

Next Week

•  No class Monday, work on project
•  Recorded lecture reviewing 2nd half material

(link on Schedule page)
•  Look at directions for project submission

under Week 10
–  Presentations
–  Project submission

CIS 422/522 Winter 2014 3

Testing

•  Objectives of software testing
•  Types of testing
•  Testing strategy
•  Reflections

2
CIS 422/522

CIS 422/522 Winter 2014 4

Testing Fundamentals

•  Coding produces errors
–  Data show 30-85 errors are made per 1000 SLOC

•  Testing: processes of executing the code to
detect errors

•  In practice, it is impossible to check for all
possible errors by testing

•  Even checking a useful subset is expensive
–  40%-80% of development cost
–  Must be re-done when software changes
–  Potentially unbounded effort

CIS 422/522 Winter 2014 5

Testing Fundamentals (2)

•  Reality: must settle for testing a subset of
possible inputs
–  Even extensively tested software contains 0.5-3 errors

per 1000 SLOC
•  Pesticide Paradox: every method used to prevent or find

bugs leaves a residue of subtler bugs against which those
methods are ineffectual [Beizer]

–  Always a tradeoff of cost vs. errors found
•  Fundamental cost/benefit questions

–  Which subsets of possible test cases will find the most
errors?

–  Which will find the most important errors?
–  How much testing is enough?

CIS 422/522 Winter 2014 6

Ideal Testing Goal

•  Goal: choose a sufficiently small but adequate
set of test cases (input domain)
–  Small enough to economically run the complete

set and re-run when software changes
–  “Adequate” much harder to define, generally

means some combination of:
•  Acceptably close to required functional behavior
•  Contains no catastrophic faults
•  Reliable to an acceptable level (mean time to failure)
•  Within tolerance levels for qualities like performance,

security, etc.

3
CIS 422/522

CIS 422/522 Winter 2014 7

Testing Objectives

•  Disagreement over best criteria for choosing
the test set leads to two general approaches

•  Fault Detection: testing intended to find as
many faults as possible

•  Confidence Building: testing intended to
increase confidence that the software works
as intended

CIS 422/522 Winter 2014 8

Why continuing disagreement?

•  Both approaches have notable weaknesses
•  Fault Detection (bug hunt)

–  Tests according to coverage criteria
–  Equal chance, cost for finding arbitrary error
–  Implicitly assumes all bugs are equal, clearly not true in

many cases
•  Confidence Building (usage emulation)

–  Tests according to expected use
–  Higher chance of finding bugs that users will routinely

encounter, misses others
–  Implicitly assumes that infrequent bugs are

unimportant, also untrue in many cases

CIS 422/522 Winter 2014 9

Methods by Adequacy Criteria

•  Test methods typically classified by the criteria
used to choose the test set

•  Classification based on the source of information
to derive test cases:
–  black-box testing (functional, specification-based)
–  white-box testing (structural, program-based)

•  Classification based on the criterion to measure
the adequacy of a set of test cases:
–  coverage-based testing
–  fault-based testing
–  error-based testing

4
CIS 422/522

CIS 422/522 Winter 2014 10

White-Box Testing

•  Also “clear box”
•  Testing strategies based on knowledge of the

code within a program or module
•  Generally applies one or more forms of code

coverage criteria
–  Every non-commentary line of code is executed

(statement coverage)
–  Every branch is taken (branch coverage)
–  Every block of code is executed (block coverage)
–  Every path is executed (path coverage)
–  Every defined variable is (correctly) used (define-use

coverage)

CIS 422/522 Winter 2014 11

Black-Box Testing

•  Testing strategies based on program or module
interface specification (but not of the code

•  For module tests:
–  Returned values conform to syntactic and semantic

specifications for the interface
–  Inputs beyond parameter bounds, or that violate syntax

or semantics, throw exceptions
–  Performance requirements are met (where defined)

•  For integration and system tests
–  Sunny day, rainy day scenarios produce expected

results
–  Based on requirements, use cases

CIS 422/522 Winter 2014 12

Coverage Testing

•  Looks at internal code structure (white-box)
•  Test set adequacy defined by some form of

coverage criteria
–  E.g., % of statements executed

•  Three common techniques:
–  control-flow coverage
–  data-flow coverage
–  coverage-based testing of requirements

5
CIS 422/522

CIS 422/522 Winter 2014 13

Example: Control Flow Coverage

•  Model program as flow graph
–  E.g., branches are nodes with multiple edges
–  An execution is one path through the graph
–  Generally very large number of possible paths

•  Adequacy based on coverage of some aspect of
the graph, in increasing order:
–  Node coverage: execute each statement
–  Branch coverage: execute each branch
–  Path coverage: execute every path

•  % Coverage provides a test-set metric
•  Many supporting tools

CIS 422/522 Winter 2014 14

Control Flow Graph

•  Supporting tools
–  Generate flow graphs
–  Generate test cases,
–  Track coverage metrics

CIS 422/522 Winter 2014 15

Example: Fault-based Testing

•  Does not look at code structure (black-box)
•  Looks for a test set with a high ability to

detect faults
•  Two techniques:

–  Fault seeding
–  Mutation testing

6
CIS 422/522

CIS 422/522 Winter 2014 16

Fault Seeding

•  Adequacy of test set judged by ability to find
seeded errors
–  Seeds errors randomly into the code
–  Look at percentage of seeded errors found
–  Better test sets find more of the seed errors

•  Infer that those sets will also find more latent
errors
–  Look for high percentage of seeded to latent errors

CIS 422/522 Winter 2014 17

Example: Operational Scenarios

•  Focus on confidence building (rather than error-detection), also
black-box

•  Based on knowledge about how users do or will use the system
–  Inputs based on statistical analysis of actual inputs
–  Inputs based on estimates, use cases, user observation, focus groups,

etc.
–  Inputs based on limited deployment (E.g., Netflix, Amazon)

•  Supports statistical inference about the likelihood of a failure in
actual use (i.e., Cleanroom)
–  Usability requirements
–  Performance requirements

•  Misses unlikely events
–  Low-frequency events tend not to be tested (edge cases, exceptions,

unpredictable behavior)
–  Some low frequency events are critical

CIS 422/522 Winter 2014 18

Experimental Results

•  There is no uniformly best technique
•  Different techniques tend to reveal different types

of faults
•  Multiple techniques reveal more faults (at a cost)
•  Cost-effectiveness of run-time testing is low,

particularly compared to inspections (vast
majority of tests find no errors)
–  Design review: 8.44
–  Code review: 1.38
–  Testing: 0.17

7
CIS 422/522

CIS 422/522 Winter 2014 19

Interpretation

•  A combination of manual and automated
techniques is most cost effective
–  People are better at detecting many kinds of errors

than machines
–  Machines are better at repetitive checks and minute

details (comparing values)
•  Testing works best in a supporting role (checking

assumptions)
–  Activity of producing test cases and results double-

checks other artifacts
•  Is it well enough defined to write a good test case?
•  Are edge cases defined? Etc.

–  Gives feedback on assumptions and expectations:
does the system do what we expect?

CIS 422/522 Winter 2014 20

Quality is Cumulative

•  Are the requirements valid?
•  Complete? Consistent? Implementable?
•  Testable?

•  Does the design satisfy requirements?
•  Are all functional capabilities included?
•  Are qualities addressed (performance,

maintainability, usability, etc.?

•  Do the modules work together to implement all
the functionality?

•  Are likely changes encapsulated?
•  Is every module well defined

•  Implement the required functionality?
•  Race conditions? Memory leaks? Buffer

overflow?

Requirements
Analysis

Architectural
Design

Detailed
Design

Coding

CIS 422/522 Winter 2014 21

Best Approach

•  Start early, test often
–  For every work product, we ask: How can I find

defects as early as possible?
–  Create test plans and test cases as a way of

checking the qualities of requirements, design, etc.
•  Use a combination of methods

–  Inspections and reviews of every artifact
–  Testing at every stage possible

•  Manual
•  Module
•  System

8
CIS 422/522

CIS 422/522 Winter 2014 22

Software Testing in Practice

•  Most companies’ new hires are testers
–  Regarded as less prestigious, lower skilled activity

•  Most testing work is manual; help from tools is
still limited

•  In many cases, testing is not performed using
systematic testing methods or techniques

•  Often delayed, cut short by schedule pressure
•  Sometimes there are “conflicts of interest”

between testers and developers
–  Testing should be “destructive” as possible
–  Difficult attitude for developer

•  Result is poor return for time/money spent

CIS 422/522 Winter 2014 23

QA Planning

•  Effective testing must be part of the overall plan
–  Fully supported by management (time, budget, skills)
–  Fully integrated into the development plan from the

beginning
•  Include use and evaluation of results

–  Process for addressing defects found
–  Measures of code quality
–  Measures of test quality and completeness

•  Test results must provide feedback for improvement
–  Better QA process
–  Better coding practices, etc.

•  Look at example plan

CIS 422/522 Winter 2014 24

Questions

